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J O U R N A L  OF LIQUID CHROMATOGRAPHY, 12(7), 1169-1 185 (1989) 

ON THE USE OF THE KNOX 
EQUATION. 1. THE FIT PROBLEM 

A L A I N  BERTHOD 
Laboratoire des Scieirces Aitalytiqires 

U.A. CNRS 434 
Uiiiversile de Lyorr I 

6 96 22 Villerrrbarriie. cedex 
France 

ABSTRACT 

To obtain significant A, B, and C parameters of the Knox 
equation, which corresponds to the plot of the reduced plate height, 
h, versus the reduced linear velocity, I, actual results must be 
fitted correctly. The Knox equation is analyzed, the rale of each 
individual parameter is shown. The equation producing the coordinates 
of the minimum plate height (maximum efficiency) is fully derived 
from the derivative of the Knox equation. Two tables giving the 
minimum coordinates for usual A, B, and C ranges are listed. The 
classical fit method is derived and analyzed. A graphical fit method 
which uses the remarkable graphical capabilities of modern spread- 
sheet packages is described. A synthetical set of data was fitted. 
It is demonstrated that each Knox parameter, obtained through fit 
procedures, must be given with the fitting confidence interval which 
is often in the 20% range. 

In Liquid Chromatography (LC), column testing is daily done 
for various important purposes: studies of selectivity and retention 
variation, and/or efficiency evaluation. It was recently shown (1) 
that 25 ODs phases had different selectivity comportment toward 
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1170 BERTH 0 D 

polycyclic aromatic hydrocarbons. This is a general trend ( 2 ) :  lot 
to lot variability of commercial columns is well-known. In evaluation 
of LC column performances, the silanol and metal activity, the 
bonding type (monomeric or polymeric) and bonding density, the pore 
size and volume are the important points of the stationary phase to 
be known ( 3 ) .  When assessing the total column efficiency, plots of 
h, the reduced plate height, versus y, the reduced mobile phase 
velocity, are commonly used. 

The most widely accepted plate height equation is the Knox 

equation ( 4 - 6 )  that is: 

h = A y’” + B / y  + a Eq. 1 

in which: A, B and C are the constants of the Knox equation, 
h is the reduced plate height with h=H/4, (H is the 
plate height and $, the particle diameter), 
y is the reduced velocity with y=u$/Dm (u is the 
mobile phase linear velocity (cm/s), and Dm is the 
solute diffusion coefficient in the mobile phase 
(cm2/S)  1. 

Measurements of efficiencies at different flow rates allows 
one to obtain a Knox plot which led to the A, B and C terms. The A 

term is related to the packing quality. A well-packed column has a 
A value around unity or less. Stationary phases squeezing or 
iissolution produces discontinuity inside the stationary phase bed. 
Efficiency is greatly reduced inducing a A term increase ( 7 ) .  

The B term is related tc solute longitudinal diffusion. It 
is responsible for the decrease in efficiency at very low flow rates. 
The C term represents the mass-transfer contribution. It depends on 
the solute retention (k’) on the pore size and volume, and on the 
solute diffusion coefficient in the mobile phase and in the station- 
ary phase ( 7 - 8 ) .  

The A, B and C values allow to obtain an insight in the 
solute-stationary phase exchange. They are very important in 
fundamental chromatographic studies ( 9 ) .  To obtain significant A, B, 
and C values, h versus y plots of actual results must be correctly 
fitted, that is the topic of this paper. Of course the plate heights 
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USE OF THE KNOX EQUATION. I 1171 

must be correctly measured, which is the matter of Part I1 of this 
work. 

After an analytical description of the Knox equation, the 
importance of the fit in the obtention of the A, B, and C terms, and 
their subsequent significance is exposed. The classical least square 
method is described and analyzed. A different approach of the fit 
problem, using the tremendous graphical capabilities of modern 
software packages is presented. 

1- Analytical properties of the Knox equation 

Derivative and minimum of h 
It is mathematically well-known that the minimum value of 

h occurs when the dh/dv derivative is nil. The particular point, I+,- 

q,, corresponds to the maximum efficiency of the column that’s why 
it is an interesting point to locate. The derivative of Eq. 1 is: 

dh/dy = A / (  32”) - B/J + C Eq. 2 

With the variable change X=y-2A, Equation 2 becomes: 

-B 2 + AX/3 + C = 0 

This last equation has always at least one real solution: 

with A = (6/B2)(1 - [4A3/(729Bs)]) 

and $J = 4A3/(729B6) 

the solutions are: 
-when A > 0 (or ~5 < 1) 

-when A < 0 (or + > 1) 

X, = 2/3 (A/B)”‘cos(l/3 arc cos (1/+)) 
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1172 BERTHOD 

in both cases: - x -312 
% -  0 

Table I lists the reduced velocity corresponding to the 
minimum h value for a well-packed column (A=0.5) and for a poorly 
packed column ( A = 2 ) ,  with the B and C terms in the usual ranges. It 
can be seen that the optimal flow rate increases markedly when both 
B and C decrease. This means that fast and efficient separations can 
be achieved only with well-packed columns (low A values) and fast 
mass-transfer between phases (low C values). 

A effect 
Figure 1 shows the effect of A .  While the 0 and C values 

were kept constant, the value of A was varied from 0.5 to 10, 
corresponding to a very well-packed column (A=0.5) to a poorly packed 
column or a column with a squeezed stationary phase (A=10). One can 
see that a poorly packed column presents a sharp minimum, at very low 
flow rates, in the h vs y plot. A well-packed column presents a 
diffuse minimum. It is possible to work at high flow rates with a 
good efficiency. If needed, Figure 1 demonstrates the extreme 
importance of a very good stationary phase packing. 

B effect 
Figure 2 shows the effect of 8 .  At high flow rates, the 

influence of B is insignificant: the plate height contribution of the 
B/y term decreases rapidly when y increases. The most important 
effect of a B increase is an increase of the optimum flow rate. 

C effect 
Figure 3 shows the effect of C. As shown by the derivative 

(Eq. 2 ) ,  the C term has the main importance on slope at high flow 
rates. If the solute mass-transfer is slow (elevated C values), it 
will be necessary to work at reduced flow rates to obtain an adequate 
efficiency. 

Figures 1-3 illustrate the fit problem: with different sets 
of A, B, and C values, it is possible to obtain rather similar 
overall plots as demonstrated below. 
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Table I - Optimal reduced velocity 
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A = 0.5 

5.98 7.84 9.43 10.84 12.10 14.50 16.80 

4.18 5.36 6.37 7.28 8.10 9.59 10.92 

3.39 4.29 5.05 5.73 6.35 7.46 0.44 

2.94 3.69 4.34 4.90 5.42 6.34 7.16 

2.64 3.30 3.87 4.36 4.82 5.63 6.34 

A = 2  

1.68 2.28 2.83 3.34 3.83 4.75 5.61 

1.67 2.25 2.78 3.27 3.73 4.58 5.37 

1.62 2.16 2.63 3.07 3.46 4.17 4.80 

1.55 2.04 2.45 2.81 3.14 3.77 4.37 

1.47 1.90 2.26 2.62 2.96 3.57 4.12 

1.33 1.74 2.10 2.42 2.71 3.25 3.74 

y values (dimensionless) for which dh/dv (Eq. 2) is zero. 
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Figure 1: The effect of A. 

C = 0.035 
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Figure 2: The effect of B. 
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5 a -  

5 

P W 
1 
w 7 -  

a 
n 6 -  
W 
0 

a 5 -  a 

4 -  

0 20 40 

REDUCED LINEAR VELOCITY 

Figure 3: The effect of C. 

2- Fitting procedures 

Classical f i t  method 
The classical method to fit a set of N data, h,-v,, is to 

use the Knox equation minimizing the deviation between the calculated 
and the actual values (least square method). This method is briefly 
described below: 

Defining the S ( A )  term as the sum of the N experimental 
plate heights, hi, multiplied by the reverse of the cubic root of the 
corresponding reduced velocity, 4 :  

also, from Eq. 1: 

Eq. 4 S ( A )  = NA + B C v+-‘~ + C C y, 213 
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then : 

BERTH 0 D 

A = ( l / N ) * [ S ( A )  - B X xi4" - C X v+'~] Eq. 5 

Defining the same way S ( B )  and S(C): 

S(B) = C h,$ = NB + A C q4I3  + C C 4' Eq. 6 

it is possible to derive an expression for A, B, and C using a 
linear combination of the sums of the linear velocities raised to 
some ith power. Using the convenient notation: 

S ( X )  = C 4" Eq. 8 

A can be expressed as: 

A = (1/D) { [ N S ( A )  - S(C)S(2/3)] * [$ - S(2)S(-2)] - 
[NS(B) - S(C)S(2)] * [NS(-4/3) - S(2/3)S(-2)]} Eq. 9 

in which D is the comon denominator whose full derivation is exposed 
in Annex along with the B and C equations. 

This widely used method can be easily automatized on 
microcomputers to give the A, B, and C values and the error of fit 
usually taken as the mean of the squared deviations between the 
measured and calculated hi values. We want to point out that the 
results, always computed in seconds, must be carefully considered. 
Even with a very low error of fit, the A, B, and C terms obtained 
may be highly questionable. Often one out of the three terms can be 
predetermined. For example, the C term can be estimated at high flow 
rates, neglecting the B term (7). On the opposite, the B term can be 
obtained at very low flow rates (9) or by the arrested elution method 
(10). Once a term is known, it can be put in Eqs 4-7 to simplify the 
derivation of the two remaining terms. For example, when B is known, 
A is estimated using: 

A = (l/D') * [NS'(A) - S'(C)S(2/3)] Eq. 10 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



USE OF THE KNOX EQUATION. I I 1 7 7  

The complete derivation of the relations can be found in Annex. 
Commonly, the error of fit is higher when one of the Knox parameters 
was measured apart. 

Visual fit mathod 
Recently introduced software packages are powerful tools 

that must be known and used by Analytical Chemists. Spreadsheets are 
electronic worksheets arranged horizontally in rows and vertically 
in columns. This defines a grid of cells. Each cell can contain a 
number, a string of characters, a formula calling other cells, or a 
macro-command. Any cell in the worksheet can be linked to any other 
by a user-defined relationship. Most modern software packages, such 
as Lotus 123 (Lotus Development Corp., Cambridge, MA), Excel 
(Microsoft Corp.) or Quattro (Borland International Inc.), have 
graphic capabilitiez (11). 

Placing the experimental y1 values in column a, the corres- 
ponding h, values in column b, it is possible, with a keystroke, to 
visualize the experimental h vs y plot. Placing the Knox equation 
(Eq. 1) in column c, referring to three named cells for the A, B, 
and C terms, it is possible to calculate a h, set corresponding to 
any A, B, and C values. A second plot, using column c (calculated h, 
values) and column a (experimental y , )  can be drawn with a different 
color and compard to the experimental plot. If the cell named A is 
changed, a keystroke (F10 key) allows to see the evolution of tne 
calculated plot compared to the experimental plot. Placing in column 

d the squared deviation (h, ey, - h, talc), the mean of this squared 
deviation can be used as a test to optimize the fit using macro- 
commands. This is described in Part I1 of the annex. 

The main advantage of the visual method is to reveal 
erroneous experimental results. Points corresponding to inaccurate 
measurements will stand apart of the general trend of the plot. Such 
points can be removed to improve the goodness of fit (12). 

Another feature put forward by the visual method is the 
absolute necessity to have experimental points well around the 
minimum of the h vs y plot to be able to obtain a significant B 
term. AS Figure 2 showed, if the minimum is not present in the 
experimental plot (too high y values), any B value will fit the data. 
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1178 BERTHOD 

3- Goodness of fit 

To illustrate the fit problem, an artificial set of data was 
generated using the values 1.01, 6.2, and 0.18 for A, B, and C, 
respectively. 15 couples, hi-$, were generated. The classical method 
gave the exact A, B, and C values with an error of fit of lo” due 
to computer truncating. When the exact B or C value was injected, the 
two other values were correctly found. An real set of data is much 
more difficult to handle. To generate a more realistic set of data, 
the previous computed set was convoluted to introduce a only 1% 
random deviation on each hi value. Figure 4 shows the points and the 
fit obtained with the least square method. The error of fit was 

5 . 1 ~ 1 0 ~ ~  which is fairly acceptable. However, a only 1% error on the 
h data induced a 6%, 1.6%, and 5.6% error on the A, B, and C terms, 
respectively (Table 11). 

Figures 5 and 6 presents the same points with force-fitted 
plots using B=6.5 and B=5.7, respectively. The error of fit were 
2.7~10~’ and 3.5x10”, respectively, which would be accepted by most 
people. The errors increased dramatically (Table 11). 

On Figures 4-6 (bottom), the contribution of each term is 
represented. This shows that the low A value of the Figure 5 fit is 
compensated by a high B and specially a high C value, and vice-versa 
with the Figure 6 fit. The sum of the three contributions produces 
acceptable fits on the reduce y range studied. 

Conclusion 

Since the early derivation of fit procedures (13), use and 
abuse of fitting methods were done. For example, equations relating 
chromatographic retention times to solute refractive index or density 
were derived (14). It is very important to be aware that a “bug“- 
free computer program will produce 8-digit parameters to fit an 
experimental set of results, when the first digit of such parameters 
could be not significant. This is the case in the fit of a h vs y 

set of data using the Knox equation: if the set of experimental data 
does not display the minimum, the least square fitting method will 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
3
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



USE OF THE KNOX EQUATION. I 1179 
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REDUCED VELOCIM 

Figure 4: Top: synthetical set of data (open squares) fitted as 
A=0.95, B=6.3, and C=O.19 (full line). 
Bottom: the contribution of each separate term, the 
A Y ’ ~  curve crosses the Cv line at y=ll. 

Table I1 - The goodness of fit 

Comment 

~ 

exact values 

Figure 4 
(least square) 
Figure 5 
(force fit B) 
Figure 6 
(force fit B) 

A error B error C error error 
of fit 

1.01 - 6.20 - 0.18 - - 

0.95 -6% 6.30 -1.6% 0.19 5.6% 0.00051 

0.89 -12% 6.50 4.8% 0.20 11% 0.0027 

1.20 19% 5.70 -8.1% 0.15 -17% 0.0035 

The result of such a fit must be given as: A = 1.04 f 0.16; B = 
6.10 t 0.40; C = 0.17 f 0.03; with an er ror  of fit lower than 
0.0035. 
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Figure 6: 
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REDUCED VELOCITY 

Top: synthetical set of data (open squares) f i t t e d  as  
A=0.89,  B=6.5, and C=0.20 ( f u l l  l i n e ) .  
Bottom; t h e  contribution of each separate term, 
AyIA curve crosses t h e  Qr l ine  a t  y = 9 . 3 .  

7 

the 

0 I ,  I I I  I l l 1  I I  1 1  1 1 ’ ’  

3 5 7 9 I 1  I3 I5 17 19 

REDUCED VELOCIN 

Top: synthetical set of data (open squares) f i t t e d  as 
A=1.20,  B=5.7, and C=O.15 ( f u l l  l i n e ) .  
Bottom: the contribution of each separate term, t h e  
A Y ’ ~  curve does not cross t h e  Cy l i n e  i n  the y range 
presented. 
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produce a B term (may be with 8 digits) which has no meaning (Figure 

When the Knox equation is used to fit h vs y plots, the 
confidence interval of each fitted term A, B, and C should be given. 
Depending on the accuracy and reproducibility of the experimental 
results, the width of the confidence intervals is comonly higher 
than 20% of the term (9). 

2). 

References 

1- 

2- 
3- 
4- 
5-  

6- 

7- 
8- 

9- 

10- 
11- 
12- 

13- 
14- 

Sander, L.C.; Wise, S . A . ,  I[Rc & CC, Is, 383 (1988). 
Scott, R.P.W.; Kucera, P., J. Chrcmatogr., 142, 213 (1977). 
Sander, L.C., J. Chranatogr. Sci.,  26, 380 (1988). 
Knox, J.H.; Salem, M., J. Chranatogr. Sc i . ,  lo, 80 (1972). 
Done, J.N.; Knox, J.H., J. Chramatogr. Sci., lo, 606 (1972). 
Kennedy, G.J.; Knox, J.H., J. chromatogr. Sci. ,  lo, 549 
(1972). 
Knox, J.H. , J. Chmmatogr. Sci.,  l5, 352 (1977). 
Giddings, J.C. , wamics of Chromatography, Marcel Dekker, 
New York, 1965. 
Berthod, A.; Chartier, F.; Rocca, J.L., J. Chmmatogr., in 
press (1989). 
Knox, J.H.; McLaren, L., Anal. Chem., 3, 1477 (1964). 
Allars, A. ,  Int. Biotechuology Lab., 6., 38 (1988). 
Stout, R.W.; DeStephano, J.J.; Snyder, L.R., J. Chmmatogr., 
- 282. 263 (1983). 
Savitzky, A.; Golay, M.J.E., Anal. Chem., 3, 1627 (1964). 
Yixing, 2 . ;  Keji, H., Dawua Xuebao, 1, 177 (1986). 

ANNEX 

Mathematical derivation of A, B, and C 

Using the notation exposed by Eqs. 5-8, it can be written: 

S ( A )  = NA + BS(-4/3) + CS(2/3) Eq. A1 
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S(B) = NB + CS(2) + AS(4/3) 

S(C) = NC + AS(-2/3) + BS(-2) 

BERTHOD 

Eq. A2 

Eq. A3 

From Eqs. Al-A3, we derive A, B, and C: 

A = (l/N)[S(A) - BS(-4/3) - CS(2/3)] Eq. A4 

B = (l/N)[S(B) - CS(2) - AS(4/3)] Eq. A5 

C = (l/N)[S(C) - AS(-2/3) - BS(-2)] Eq. A6 

Substituting Eq. A6 in Eq. A5, it comes: 

B = (l/$)[NS(B) - S(C)S(2) + A{S(-2/3)S(2) - NS(4/3) + 
Bs(-2)s(2)}1 

and 

B = [l/(d - S(2)S(-Z))][NS(B) - S(C)S(2) + A{S(-2/3)S(2) - 
NS(4/3) 1 1  Eq. A7 

Substituting Eq. A6 in Eq. A4, it comes also: 

A = [1/($ - S(2/3)S(-2/3))][NS(A) - S(C)S(2/3) - B{NS(-4/3) 
-S(2/3)S(-2) 1 1  Eq. A8 

With Eqs A7 and AB, it can be derived: 

ia which the denominator D is: 

D = [$ - S(2/3)S(-2/3)][I? -S(2)S(-2)] + [S(-2/3)S(2) 
-NS(4/3)][NS(-4/3) - S(2/3)S(-2)] Eq. A10 

Similar derivations for  B and C produce: 
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USE OF THE KNOX EQUATION. I 1183 

C = (l/D){[NS(C) - S(A)S(-2/3)][d - S(4/3)S(-4/3)] + [NS(B) 
-S(A)S(4/3) ] [S(-2/3)S(-4/3) - NS(-2)]} Eq. A12 

If one term is known, the calculus is very simplified. Say 
B is known; then, the h data set must be changed in h': 

h' = h - B/+ = Ax'" + 

S(A) becomes S'(A) : 

S'(A) = X hit+-'D = NA + S(+2/3) Eq. A13 

similarly 

S'(C) = X h,/+ = NC + AS(-2/3) Eq. A14 

Eqs A13 and A14 are easily combined to produce: 

A = {NS'(A) - S'(C)S(2/3)}/{$ - S(2/3)S(-2/3)} Eq. A15 

and 

C = {NS'(C) - St(A)S(-2/3)}/{d - S(2/3)S(-2/3)} Eq. A16 

We note that only four sumations were needed: S'(A), S'(C), S(2/3) 
and S(-2/3) instead of nine in the general case. This decreases 
possible errors due to computer truncating. 

If A or C is known, the two other terms can be easily 
obtained the same way. 

Visual fit method, a macro-ccamand for Iatus 123 

Lotus 123 is controlled by a menu system and access to the 
main menu is achieved by pressing the " / "  key. The menus offer a 
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1184 BERTHOD 

put the value 
"deviation" 

compute 

compute I 
t 

put "deviation" 
in "Aerr" 

J. 

5 2 0 :  READ 

H I J K L M N 0 
1 
2 MACRO / A  
3 /rvdeviation-precedent-(let a,a+.Ol:value) 
4 (windowsoff)(paneloff)(calc) 
5 (if deviation>precedent){let a , a - . O l ) ( r a l c ) / r v d e v l a t i o n - a e r r - ( q u i t )  
6 (branch \a) 
7 
8 
9 MACRO 10 
10 /rvdeviation"precedent-(let b,b+.l:value) 
11 (windowsoff)(paneloff)(calc) 
12 (if deviation>precedent){let b,b-.l)(calc)/rvdeviation-berr-(quit) 
13 (branch \b) 
14 
15 
16 MACRO /C 
17 /rvdeviation-precedent-(let c,c+.005:value) 
18 (windowsoffJ(panelofft(ca1c) 
19 ( i f  deviation>precedent)(let c,c-.005)(calc)/rvdeviation~cerr-(quit) 
20 (branch \c) 
28-Jan-89 11:48 AM 

Figure I: Top: Flow chart of the macro-command to optimize the 
A term. "precedent" is the name of the cell in which 
the deviation before calculation is stored. The macro 
stops when the deviation increases. 
Bottom: actual lines written in the Lotus 123 language 
corresponding to the optimization of the A, B, and C 
terms. 
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USE OF THE KNOX EQUATION. I 1185 

series of options displayed across the top of the screen, each 
specified by a single word such as "print" or "file". Each option is 
selected by pressing the key corresponding to the first letter of the 
word describing the chosen option which either causes the comnd to 
be obeyed or displays the next level menu. Thus a sequence of 
keystrokes such as "/ppg" representing "print" , "printer" , "go" could 
be used to cause a printout of the worksheet. 

Any of the cells in Lotus 123 can be given a label; a macro- 
comand is simply a sequence of keystrokes and/or keywords placed in 
one of these labeled worksheet cells. To activate a macro-comnd, 
simply press the ALT key and the appropriate label key and this 
causes all the keystrokes and keywords stored in the cell to be 
processed automatically (11). 

Once the experimental h and y values were entered in two 
columns, the Knox equation was entered in a third one, referring to 
three cells named A, B, and C .  A fourth column will contain the 
squared deviation. A cell named "deviation" will contain the mean 
value of the deviation column (@AVG(first cell..last cell)). Another 
cell, named "precedent" will be prepared, it is needed by the program 
chart shown in Figure 7-top (for A search) and the Lotus macro- 
comands for the A, B, and C search (Figure 7-bottom). 

To save time, A, B, and C values can be estimated by visual 
inspection. As the macros increase the studied term, underestimated 
A, B and C values must be present when invoking the macro. Drawing 
and data corresponding to Figures 4-6 were obtained with these 
macros. The computer must have an arithmetic coprocessor (8087 chip 
on IBM PCs or compatibles, 80287 chip on IBM ATs and compatibles, 
etc ...) in order to recalculate (keyword {calc), Figure 7) the sheet 
in a fraction of a second (instead of tenths of seconds or minutes). 
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